Cover von Intrusion Detection wird in neuem Tab geöffnet
E-Medium

Intrusion Detection

A Data Mining Approach
Verfasser: Suche nach diesem Verfasser Sengupta, Nandita (Verfasser); Sil, Jaya (Verfasser)
Jahr: 2020
Verlag: Singapore, Springer
Reihe: Cognitive Intelligence and Robotics
Mediengruppe: Ebook
Download Zum Download von externem Anbieter wechseln - wird in neuem Tab geöffnet

Exemplare

StandorteStandort 2StatusVorbestellungenFristBarcodeLageplan
Standorte: springer Standort 2: Status: Verfügbar Vorbestellungen: 0 Frist: Barcode: Lagepläne: Lageplan

Inhalt

This book presents state-of-the-art research on intrusion detection using reinforcement learning, fuzzy and rough set theories, and genetic algorithm. Reinforcement learning is employed to incrementally learn the computer network behavior, while rough and fuzzy sets are utilized to handle the uncertainty involved in the detection of traffic anomaly to secure data resources from possible attack. Genetic algorithms make it possible to optimally select the network traffic parameters to reduce the risk of network intrusion. The book is unique in terms of its content, organization, and writing style. Primarily intended for graduate electrical and computer engineering students, it is also useful for doctoral students pursuing research in intrusion detection and practitioners interested in network security and administration. The book covers a wide range of applications, from general computer security to server, network, and cloud security.

Details

Verfasser: Suche nach diesem Verfasser Sengupta, Nandita (Verfasser); Sil, Jaya (Verfasser)
Verfasserangabe: by Nandita Sengupta, Jaya Sil
Jahr: 2020
Verlag: Singapore, Springer
Systematik: Suche nach dieser Systematik springer
Suche nach diesem Interessenskreis
ISBN: 978-981-15-2715-9
Beschreibung: 1st ed., Online-Ressource, XX, 136 p.
Reihe: Cognitive Intelligence and Robotics
Schlagwörter: Computersicherheit; Rechnernetz; Ebook
Suche nach dieser Beteiligten Person
Sprache: Englisch
Mediengruppe: Ebook